Universita Faculty

della of Informatics
Svizzera

italiana

Dissertation Proposal

November 2, 2018

When and How JAVA Developers Give
Up Static Type Safety

Luis Mastrangelo

Abstract

The main goal of a static type system is to prevent certain kind of errors from happening at
run-time. A type system is formulated as a set of constraints that gives any expression or
term in a program a well-defined type. Yet mainstream programming languages are endowed
with type systems that provide the means to circumvent their constraints through the unsafe
intrinsics and casting mechanisms.

We want to understand how and when developers circumvent these constraints. This
knowledge can be: a) a recommendation for current and future language designers to make
informed decisions b) a reference for tool builders, e.g., by providing more precise or new
refactoring analyses, c) a guide for researchers to test new language features, or to carry out
controlled programming experiments, and d) a guide for developers for better practices.

We plan to empirically study how these two mechanisms — unsafe intrinsics and casting
— are used by JAVA developers to circumvent the static type system. We have devised (for
a subset of unsafe intrinsics) and we are devising (for casting) usage patterns, recurrent
programming idioms to solve a specific issue. We believe that having usage patterns can
help us to better categorize use cases and thus understand how those features are used.

Research Advisor
Prof. Matthias Hauswirth

Research Co-advisor
Prof. Nathaniel Nystrom

Internal Committee Members
Prof. Antonio Carzaniga, Prof. Gabriele Bavota

External Committee Members
Prof. Jan Vitek, Prof. Hridesh Rajan

This proposal has been approved by the dissertation committee and the director of the
Ph.D. program:

Prof. Matthias Hauswirth, Research Advisor and Committee Chair, Universita della Svizzera
Italiana, Switzerland

Prof. Nathaniel Nystrom, Research Co-Advisor, Universita della Svizzera Italiana,
Switzerland

Prof. Antonio Carzaniga, Universita della Svizzera Italiana, Switzerland

Prof. Gabriele Bavota, Universita della Svizzera Italiana, Switzerland

Prof. Jan Vitek, Northeastern University & Czech Technical University

Prof. Hridesh Rajan, lowa State University

Prof. Walter Binder, Ph.D. Program Director, Universita della Svizzera Italiana, Switzerland

Prof. Olaf Schenk, Ph.D. Program Director, Universita della Svizzera Italiana, Switzerland

Contents

[Contents| iii
(1 Introductionl
1.1 Research QUESLION| v v i vttt et e e e e e e e e e
27 PIAIl « « v v e v e e e e e e e e 2
[2__Literature Review| 4
[2.1 Benchmarks and Corporal, 5
[2.2 Tools for Mining Software Repositories|. 5
[2.3 Large-scale Codebase Empirical Studies| 7
[2.3.1 UnsafeIntrinsicsin JAVAl 8
2.3.2 CaStiNg|. . . o v vt e e e e e 9
[3_The JAvA Unsafe API in the Wild| 11
3.1 IsUnsafeUsed? 11
(3.2 Whatis the Unsafe APT Used for?l 12
[4 Casting Operations in the Wild| 15
[4.1 Overview of our Study| o oo it e 16
[4.2 Is the Cast Operator used?|o v i v i i vttt 17
|4.3 Finding Casts Usage Patterns| 18
[5_Conclusions 20
Bibliography 21

Contents

Chapter 1

Introduction

In programming language design, the main goal of a static type system is to prevent certain
kind of errors from happening at run-time. A type system is formulated as a set of constraints
that gives any expression or term in a program a well-defined type. As|Pierce|[[2002] states:
“A type system can be regarded as calculating a kind of static approximation to the run-
time behaviors of the terms in a program.” These constraints are enforced by the type-
checker either when compiling or linking the program. Thus, any program not satisfying the
constraints stated within a type system is simply rejected by the type-checker.

Nevertheless, often the static approximation provided by a type system is not precise
enough. Being static, the analysis done by the type-checker needs to be conservative: It is
better to reject programs that are valid, but whose validity cannot be ensured by the type-
checker, rather than accept some invalid programs. However, there are situations when the
developer has more information about the program that is too complex to explain in terms
of typing constraints. To that end, programming languages often provide mechanisms that
make the typing constraints less strict to permit more programs to be valid, at the expense
of causing more errors at run-time. These mechanisms are essentially two: Unsafe Intrinsics
and Casting.

Unsafe Intrinsics. Unsafe intrinsics is the ability to perform certain operations without
being checked by the compiler. They are unsafe because any misuse made by the programmer
can compromise the entire system, e.g., corrupting data structures without notice, or crashing
the run-time system. Unsafe intrinsics can be seen in safe languages, e.g., JAvVA, C#, RUST,
or HASKELL. Foreign Function Interface (FFI), i.e., calling native code from within a safe
environment is unsafe. It is so because the run-time system cannot guarantee anything about
the native code. In addition to FFI, some safe languages offer so-called unsafe blocks, i.e.,
making unsafe operations within the language itself, e.g., C#E] and Ru STE]. Other languages
provide an API to perform unsafe operations, e.g., HASKELIEI and JAVA. But in the case of JAVA,

Thttps://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/
unsafe-code

“https://doc.rust-lang.org/book/second-edition/ch19-01-unsafe-rust.html

Shttp://hackage.haskell.org/package/base-4.11.1.0/docs/System-I0-Unsafe.html

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://doc.rust-lang.org/book/second-edition/ch19-01-unsafe-rust.html
http://hackage.haskell.org/package/base-4.11.1.0/docs/System-IO-Unsafe.html

2 1.1 Research Question

the API to make unsafe operations, sun.misc.Unsafe, is unsupporte and undocumented.
It was originally intended for internal use within the JDK, but as we shall see later on, it is
used outside the JDK as well.

Casting. Programming languages with subtyping such as JAvA or C++ provide a mech-
anism to view an expression as a different type as it was defined. This mechanism is often
called casting and takes the form (T)t. Casting can be in two directions: upcast and down-
cast. An upcast conversion happens when converting from a reference type S to a reference
type T, provided that T is a supertype of S. An upcast does not require any explicit casting
operation nor compiler check. However, as we shall see later on, there are situations where
an upcast requires an explicit casting operation. On the other hand, a downcast happens
when converting from a reference type S to a reference type T, provided that T is a subtype
of S. Unlike upcasts, downcasts require a run-time check to verify that the conversion is in-
deed valid. This implies that downcasts provide the means to bypass the static type system.
By avoiding the type system, downcasts can pose potential threats, because it is like the de-
veloper saying to the compiler: “Trust me here, I know what I'm doing”. Being a escape-hatch
to the type system, a cast is often seen as a design flaw or code smell [[Tufano et al., 2015]]
in an object-oriented system.

1.1 Research Question

If static type systems aim to prevent certain kind of errors from happening at run-time, yet
they provide the means to circumvent their constraints, why exactly does one need to do so?
Are these mechanisms actually used in real-world code? If yes, then how so? This triggers
our main research question:

MRQ

For what purpose do developers circumvent static type systems?

We have confidence that this knowledge can be: a) a reference for current and future lan-
guage designers to make informed decisions about programming languages, e.g., the adop-
tion of Variable Handles in JAVA 9 [[Lea, [2014]], or the addition of Smart Casts in KOTLINE
b) a reference for tool builders, e.g., by providing more precise or new refactoring analyses,
c) a guide for researchers to test new language features, e.g., Winther|[2011]] or to carry out
controlled experiments about programming, e.g., Stuchlik and Hanenberg [2011]] and d) a
guide for developers for best or better practices.

1.2 Plan

To answer our question above, we plan to empirically study how the two aforementioned
mechanisms — unsafe intrinsics and casting — are used by developers. Since any kind of

4http://www.oracle.com/technetwork/java/faq-sun-packages-142232.html
Shttps://kotlinlang.org/docs/reference/typecasts.html#smart-casts

http://www.oracle.com/technetwork/java/faq-sun-packages-142232.html
https://kotlinlang.org/docs/reference/typecasts.html#smart-casts

3 1.2 Plan

language study must be language-specific, our plan is to focus on JAVA given its wide usage
and relevance for both research and industryﬁ Moreover, we focus on the JAvA Unsafe API to
study unsafe intrinsics, given than the Java Native Interface already has been studied in Tan
et al.| [[2006]]; Tan and Croft| [[2008]]; [Kondoh and Onoderal [2008[]; |Sun and Tan| [|2014];
Li and Tan/[2009]. In Chapter [2) we give a review of the literature in empirical studies of
programming languages features. Sections[2.3.1|and review the state-of-the-art of the
different aspects related to the two proposed studies.

To better drive our main research question, we propose to answer the following set of
sub-questions. To answer these research sub-questions, we have already devised (for the
Unsafe API) and we are devising (for casting) usage patterns. Usage patterns are recurrent
programming idioms used by developers to solve a specific issue. We believe that having
usage patterns can help us to better categorize use cases and thus understand how these
mechanisms are used. These patterns can provide an insight into how the language is being
used by developers in real-world applications. Overall these sub-questions will help us to
answer our MRQ:

Unsafe APIL

URQ1 : To what extent does the Unsafe API impact common application code? We
want to understand to what extent code actually uses Unsafe or depends on it.

URQ2 : How and when are Unsafe features used? We want to investigate what func-
tionality third-party libraries require from Unsafe. This could point out ways in
which the JAvA language and/or the JVM can be evolved to provide the same
functionality, but in a safer way.

These questions have been already answered in our previous published study on the
Unsafe API in Java [Mastrangelo et al.,[2015]]. Chapter [3|presents a summary of this study.
Casting.

CRQ1 : How frequently is casting used in common application code? We want to
understand to what extent application code actually uses casting operations.

CRQ2: How and when casts are used? If casts are actually used in application code,
we want to know how and when developers need to escape the type system.

CRQ3: How recurrent are the patterns for which casts are used? In addition to
understand how and when casts are used, we want to measure how often de-
velopers need to resort to certain idioms to solve a particular problem.

Finally, in Chapter |4f we present our plan for the casting study, showing the results we
have so far.

Shttps://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/

Chapter 2

Literature Review

Understanding how developers use language features and APIs is a broad topic. There is
plenty of research in the computer science literature about empirical studies of programs
which involves multiple dimensions directly related to our plan. Over the last decades, re-
searchers always have been interested in understanding what kind of programs developers
write. The motivation behind these studies is quite broad, and has been shifted to the needs
of researchers, together with the evolution of computer science itself.

For instance, to measure the advantages between compilation and interpretation in BA-
sic, [Hammond) [[1977]] studied a representative dataset of programs. Knuth/[[1971] started
to study FORTRAN programs. By knowing what kind of programs arise in practice, a com-
piler optimizer can focus in those cases, and therefore can be more effective. Adding to
Knuth’s work, |Shen et al. [1990]] conducted an empirical study for parallelizing compil-
ers. Similar works have been done for CoBOL |Salvadori et al.|[[1975]]; |Chevance and Heidet
[[1978]], PascAL |Cook and Lee| [|[1982], and APL |Saal and Weiss [[1975, |1977]] programs.
Miller et al.| [[1990, [1995]]; [Forrester and Miller| [2000]] studied the reliability of programs
using fuzz testing. [Dieckmann and Holzle|[[1999] studied the memory allocating behavior in
the SPECjvm98 benchmarksE] The importance of conducting empirical studies of programs
gave rise to the International Conference on Mining Software Repositorieﬁ in 2004.

When conducting empirical studies about programs, multiple dimensions are involved.
The first one is What to analyze? Benchmarks and corpora are used as a source of programs
to analyze. Another aspect is how to select good candidates projects from a large-base soft-
ware repository. This is presented in After the selection of programs to analyze is set,
comes the question how to analyze them? An overview of what tools are available to extract
information from software repositories is given in With this infrastructure, what ques-
tions do researchers ask? In we give an overview of large-scale empirical studies that
show what kind of questions researchers ask. This chapter ends by presenting the related
work more specific to the Unsafe API and Casting in and respectively.

'https://www.spec.org/jvmas/
2http://www.msrconf.org/

https://www.spec.org/jvm98/
http://www.msrconf.org/

5 2.1 Benchmarks and Corpora

2.1 Benchmarks and Corpora

Benchmarks are crucial to properly evaluate and measure product development. This is key
for both research and industry. One popular benchmark suite for JAvA is the DaCapo Bench-
mark [Blackburn et al., | 2006]]. This suite has been already cited in more than thousand pub-
lications, showing how important is to have reliable benchmark suites. The SPEijm200ﬂ
(Java Virtual Machine Benchmark) and SPECjbeOO(f] (Java Business Benchmark) are an-
other popular JAVA benchmark suite.

Another suite has been developed by [Tempero et al.[|[[2010]. They provide a corpus of
curated open source systems to facilitate empirical studies on source code. On top of Qualitas
Corpus, Dietrich et al. [2017b]] provide an executable corpus of JAVA programs. This allows
any researcher to experiment with both static and dynamic analysis.

For any benchmark or corpus to be useful and reliable, it must faithfully represent real
world code. For instance, DaCapo applications were selected to be diverse real applications
and ease of use, but they “excluded GUI applications since they are difficult to benchmark
systematically.” Along these lines, Allamanis and Sutton| [[2013]] go one step further and
provide a large-scale (14,807) curated corpus of open source JAVA projects.

With the advent of cloud computing, several source code management (SCM) hosting
services have emerged, e.g., GitHub, GitLab, Bitbucket, and SourceForge. These services
allow the developer to work with different SCMs, e.g., Git, Mercurial, Subversion to host
their open source projects. These projects are usually taken as a representation of real-
world applications. Thus, while not curated corpora, these hosting services are commonly
used to conduct empirical studies.

Another dimension to consider when analyzing large codebases, is how relevant the
repositories are. [Lopes et al.[[2017]] conducted a study to measure code duplication in
GitHub. They found out that much of the code there is actually duplicated. This raises a
flag when considering which projects to analyze when mining software repositories.

Baxter et al.| [[1998]] propose a clone detection algorithm using Abstract Syntax Trees,
while Rieger and Ducasse| propose a visual detection for clones. Yuan and Guo|[2011[]; Chen
et al.| instead propose Count Matrix-based approach to detect code clones.

Nagappan et al.[[[2013]] have developed the Software Projects Sampling (SPS) tool. SPS
tries to find a maximal set of projects based on representativeness and diversity. Diversity di-
mensions considered include total lines of code, project age, activity, number of contributors,
total code churn, and number of commits.

2.2 Tools for Mining Software Repositories

When talking about mining software repositories, we refer to extracting any kind of informa-
tion from large-scale codebase repositories. Usually doing so requires several engineering

Shttps://www.spec.org/jvm2008/
“https://www.spec.org/jbb2000/

https://www.spec.org/jvm2008/
https://www.spec.org/jbb2000/

6 2.2 Tools for Mining Software Repositories

but challenging tasks. The most common being downloading, storing, parsing, analyzing
and properly extracting information from different kinds of artifacts. In this scenario, there
are several tools that allows a researcher or developer to query information about software
repositories.

Urma and Mycroft| [2012]] evaluated seven source code query language Java Tools
Language [[Cohen and Maman(], Browse-By-Queryﬂ SOUL [De Roover et al., [2011[], JQuery
[[Volder, 2006]], .QL [|[de Moor et al.,{2007]], Jackpotﬂ and PMdﬂ They have implemented —
whenever possible — four use cases using the tools mentioned above. They concluded that
only SOUL and .QL have the minimal features to implement all their use cases.

Dyer et al. [2013alb]] built Boa, both a domain-specific language and an online plat-
forrrﬂ It is used to query software repositories on two popular hosting services, GitHub and
SourceForge. The same authors of Boa conducted a study on how new JAVA features, e.g., As-
sertions, Enhanced-For Loop, Extends Wildcard, were adopted by developers over time [[Dyer
et al., |2014]. This study is based SourceForge data. The current problem with SourceForge
is that is outdated.

To this end, |Gousios| [[2013[] provides an offline mirror of GitHub that allows researchers
to query any kind of that data. Later on, Gousios et al. [2014] published the dataset con-
struction process of GitHub.

Similar to Boa, Igtnﬂ is a platform to query software projects properties. It works by
querying repositories from GitHub. But it does not work at a large-scale, i.e., Igtm allows the
user to query just a few projects. Unlike Boa, Igtm is based on QL — before named .QL —,
an object-oriented domain-specific language to query recursive data structures |Avgustinov
et al.| [2016].

Another tool to analyze large software repositories is presented in Brandauer and Wrigstad
[2017]. In this case, the analysis is dynamic, based on program traces. At the time of this
writing, the serviceE] was unavailable for testing.

Bajracharya et al. [[2009]] provide a tool to query large code bases by extracting the source
code into a relational model. Sourcegrapl@ is a tool that allows regular expression and diff
searches. It integrates with source repositories to ease navigate software projects.

Posnett et al. [[2010] have extended ASM [Bruneton et al., 2002} Kuleshov, |2007] to
detect meta-patterns, i.e., purely structural patterns of object-oriented interaction. [Hu and
Sartipi| [2008]] used both dynamic and static analysis to discover design patterns, while |Ar-
celli et al.|[[2008] used only dynamic.

Trying to unify analysis and transformation tools, [Vinju and Cordy [2006]; Klint et al.

Shttps://wiki.openjdk.java.net/display/Compiler/Java+Corpus+Tools
Shttp://browsebyquery.sourceforge.net/
"http://wiki.netbeans.org/Jackpot

8https://pmd.github.io/

%http://boa.cs.iastate.edu/
Yhttps://1gtm.com/
Yhttp://www.spencer-t.racing/datasets
2https://sourcegraph.com

https://wiki.openjdk.java.net/display/Compiler/Java+Corpus+Tools
http://browsebyquery.sourceforge.net/
http://wiki.netbeans.org/Jackpot
https://pmd.github.io/
http://boa.cs.iastate.edu/
https://lgtm.com/
http://www.spencer-t.racing/datasets
https://sourcegraph.com

7 2.3 Large-scale Codebase Empirical Studies

[[2009] built Rascal, a DSL that aims to bring them together by querying the AST of a pro-
gram.

As its name suggests, JavaParsel{E] is a parser for JAVA. The main issue with JavaParser
is the lack to do symbol resolution integrated with the project dependencies.

2.3 Large-scale Codebase Empirical Studies

In the same direction as our plan, [Callau et al.|[[2013]] performed an empirical study to assess
how much the dynamic and reflective features of SMALLTALK are actually used in practice.
Analogously, Richards et al.|[2010} 2011]; Wei et al.|[[2016]] conducted a similar study, but in
this case targeting JAVASCRIPT’s dynamic behavior and in particular the eval function. Also,
for JAVASCRIPT, Madsen and Andreasen![[2014]] analyzed how fields are accessed via strings,
while Jang et al.| [[2010]] analyzed privacy violations. Similar empirical studies were done
for PHP [Hills et al.,|2013; |[Dahse and Holz, 2015} [Doyle and Walden, |2011]] and SWIFT [Re-
boucas et al., |2016].

Going one step forward, Ray et al./[2017] studied the correlation between programming
languages and defects. One important note is that they choose relevant projects by popular-
ity, measured by how many times was starred in GitHub. We argue that it is more important
to analyze projects that are representative, not popular.

Gorla et al. [[2014]] mined a large set of Android applications, clustering applications
by their description topics and identifying outliers in each cluster with respect to their API
usage. |Grechanik et al.|[[2010]] also mined large scale software repositories to obtain several
statistics on how source code is actually written.

For JAVA, Dietrich et al. [2017a]] conducted a study about how programmers use con-
tracts in Maven Centram Dietrich et al.|[2014]] have studied how API changes impact JAVA
programs. They have used the Qualitas Corpus [Tempero et al., 2010] mentioned above for
their study.

Tufano et al. [[2015] |2017]] studied when code smells are introduced in source code.
Palomba et al.|[[2015]] contribute a dataset of five types of code smells together with a sys-
tematic procedure for validating code smell datasets. [Palomba et al.|[2013[] propose to detect
code smells using change history information.

Nagappan et al.|[2015]] conducted a study on how the goto statement is used in C. They
used GitHub as a data source for C programs. They concluded that goto statements are most
used for handling errors and cleaning up resources.

Static vs. Dynamic Analysis. Given the dynamic nature of JAVASCRIPT, most of the
studies mentioned above for JAVASCRIPT perform dynamic analysis. However, [Callat et al.
[2013]] uses static analysis to study a dynamically checked language. For JAVA, most empir-
ical studies use static analysis. This is due the fact of the availability of input data. Finding
valid input data for test cases is not a trivial task, even less to make it scale. For JAVASCRIPT,

Bhttp://javaparser.org/
“http://central.sonatype.org/

http://javaparser.org/
http://central.sonatype.org/

8 2.3 Large-scale Codebase Empirical Studies

having a big corpus of web-sites generating valid input data makes more feasible to imple-
ment dynamic analysis.

Exceptions

Kery et al.|[[2016[];/Asaduzzaman et al.|[[2016]] focus on exceptions. They conducted empirical
studies on how programmers handle exceptions in JAVA code. The work done by Nakshatri
et al.| [[2016]] categorized them into patterns. |Coelho et al.| [[2015]] used a more dynamic
approach by analysing stack traces and code issues in GitHub.

Kechagia and Spinellis [[2014]] analyzed how undocumented and unchecked exceptions
cause most of the exceptions in Android applications.

Programming Language Features

Programming language design has been always a hot topic in computer science literature.
It has been extensively studied in the past decades. There is a trend in incorporating pro-
gramming features into mainstream object-oriented languages, e.g., lambdas in JAVA SEI,
C++1 and C# 3. or parametric polymorphism, i.e., generics, in JAVA 5 For in-
stance, JAVA generics were designed to extend JAVA’s type system to allow “a type or method
to operate on objects of various types while providing compile-time type safety” [Gosling
et al.]. However, it was later shown [[Amin and Tate, 2016]] that compile-time type safety
was not fully achieved.

Mazinanian et al.|[[2017]] and [Uesbeck et al.|[[2016] studied how developers use lambdas
in JAVA and C++ respectively. The inclusion of generics in JAVA is closely related to collec-
tions. Parnin et al.[[[2011}, |2013]] studied how generics were adopted by Java developers.
They found that the use of generics does not significantly reduce the number of type casts.

Costa et al.|[[2017]] have mined GitHub corpus to study the use and performance of col-
lections, and how these usages can be improved. They found that in most cases there is an
alternative usage that improves performance.

This kind of studies give an insight of the adoption of lambdas and generics; which can
drive future direction for language designers and tool builders, while providing developers
with best practices.

2.3.1 Unsafe Intrinsics in JAVA

Oracle provides the sun.misc.Unsafe class for low-level programming, e.g., synchronization
primitives, direct memory access methods, array manipulation and memory usage. Although
the sun.misc.Unsafe class is not officially documented, it is being used in both industrial

Bhttps://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.27
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2006/n1968 . pdf
Yhttps://msdn.microsoft.com/en-us/library/bb308966.aspx#csharp3.@overview_topic7
Bhttps://docs.oracle.com/javase/1.5.0/docs/guide/language/generics. html
Yhttp://www.oracle.com/technetwork/java/javase/generics-tutorial-159168.pdf

https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.27
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1968.pdf
https://msdn.microsoft.com/en-us/library/bb308966.aspx#csharp3.0overview_topic7
https://docs.oracle.com/javase/1.5.0/docs/guide/language/generics.html
http://www.oracle.com/technetwork/java/javase/generics-tutorial-159168.pdf

9 2.3 Large-scale Codebase Empirical Studies

applications and research projects [Korland et al., 2010; |[Pukall et al.; Gligoric et al., 2011]]
outside the JDK, compromising the safety of the JAVA ecosystem.

Oracle software engineer Paul Sandoz performed an informal analysis of Maven artifacts
and usages in Grepcode [Sandoz, [2015]] and conducted a unscientific user survey to study
how Unsafe is used [[Sandoz, 2014]]. The survey consists of 7 questions{Z_G] that help to under-
stand what pieces of sun.misc.Unsafe should be mainstreamed. In our work [Mastrangelo
et al.,)2015]] we extend Sandoz’ work by performing a comprehensive study of the Maven
Central software repository to analyze how and when sun.misc.Unsafe is being used. This
study is summarized in Chapter [3]

Tan et al.| [[2006]] propose a safe variant of JNI. Tan and Croft| [[2008]]; Kondoh and On-
odera| [2008]] conducted an empirical security study to describe a taxonomy to classify bugs
when using JNI. [Sun and Tan|[|2014]] develop a method to isolate native components in An-
droid applications. [Li and Tan! [2009] analyze the discrepancy between how exceptions are
handled in native code and JAVA.

2.3.2 Casting

Casting operations in JAVA@ allows the developer to view a reference at a different type as
it was declared. The related instanceof operator??| tests whether a reference could be cast
to a different type without throwing ClassCastException.

Winther| [2011]] has implemented a path sensitive analysis that allows the developer to
avoid casting once a guarded instanceof is provided. He proposes four cast categorizations
according to their run-time type safety: Guarded Casts, Semi-Guarded Casts, Unguarded Casts,
and Safe Casts. We plan to refine this categorization to answer our (How and when
casts are used?). This is described in Chapter [4]

Tsantalis et al. [2008]] present an Eclipse plug-in that identifies type-checking bad smells,
a "variation of an algorithm that should be executed, depending on the value of an attribute".
They provide refactoring analysis to remove the detected smells by introducing inheritance
and polymorphism. This refactoring will introduce casts to select the right type of the object.

Livshits [2006]]; Livshits et al.|[2005]] “describes an approach to call graph construction
for JAVA programs in the presence of reflection.” He has devised some common usage pat-
terns for reflection. Most of the patterns use casts. We plan to categorize all cast usages, not
only where reflection is used.

Landman et al.|[[2017]] have analyzed the relevance of static analysis tools with respect
to reflection. They conducted an empirical study to check how often the reflection API is
used in real-world code. They have devised reflection AST patterns, which often involve the
use of casts. Finally, they argue that controlled programming experiments on subjects need
to be correlated with real-world use cases, e.g., GitHub or Maven Central.

2http://www. infoq.com/news/2014/02/Unsafe-Survey
2lhttps://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.16
2https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.20.2

http://www.infoq.com/news/2014/02/Unsafe-Survey
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.16
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.20.2

10 2.3 Large-scale Codebase Empirical Studies

Controlled Experiments on Subjects. There is an extensive literature per se in con-
trolled experiments on subjects to understand several aspects in programming, and pro-
gramming languages. For instance, Soloway and Ehrlich| [[1984]] tried to understand how
expert programmers face problem solving. [Budd et al.|[|]1980] made a empirical study on
how effective is mutation testing. [Prechelt|[|2000]] compared how a given — fixed — task was
implemented in several programming languages. [LaToza and Myers| [2010]] realize that, in
essence, programmers need to answer reachability questions to understand large codebases.
Several authors |Stuchlik and Hanenberg| [2011]]; Mayer et al.[[2012[]; [Harlin et al.| [2017[]
measure whether using a static-type system improves programmers productivity. They com-
pare how a static and a dynamic type system impact on productivity. The common setting
for these studies is to have a set of programming problems. Then, let a group of develop-
ers solve them in both a static and dynamic languages. For this kind of studies to reflect
reality, the problems to be solved need to be representative of the real-world code. Having
artificial problems may lead to invalid conclusions. The work by Wu and Chen! [2017]]; Wu
et al.|[[2017]] goes towards this direction. They have examined programs written by students
to understand real debugging conditions. Their focus is on ill-typed programs written in
HASKELL.

Chapter 3

The JAvVA Unsafe API in the Wild

We have analyzed 74GB of compiled JAVA code, spread over 86,479 JAvVA archives, to de-
termine how JAVA’s unsafe capabilities are used in real-world libraries and applications. We
found that 25% of JAVA bytecode archives depend on unsafe third-party JAVA code, and thus
JAVA’s safety guarantees cannot be trusted. We identify 14 different usage patterns of JAVA’s
unsafe capabilities, and we provide supporting evidence for why real-world code needs these
capabilities. Our long-term goal is to provide a foundation for the design of new language
features to regain safety in JAVA.

We have already published our work on how developers use the sun.misc.Unsafe APIL.
For a detailed description of the methodology used to find patterns and the patterns we
found please refer to Mastrangelo et al|[2015]. Here we answer[URQ1|in followed by
how the patterns we found could be implemented in a safer way in response to

3.1 Is Unsafe Used?

To answer (To what extent does the Unsafe API impact common application code?) we
need to determine whether and how Unsafe is actually used in real-world third-party JAVA
libraries, and to what degree real-world applications directly and indirectly depend on such
unsafe libraries. To achieve our goal, several elements are needed.

Code Repository. As a code base representative of the “real world”, we have chosen the
Maven Central software repository.

Artifacts. In Maven, an artifact is the output of the build procedure of a project. Artifacts
are usually .jar files, which archive compiled JAvA bytecode stored in .class files.

Bytecode Analysis. We use a bytecode analysis library to search for method call sites
and field accesses of the sun.misc.Unsafe class.

Dependency Analysis. We define the impact of an artifact as how many artifacts depend
on it, either directly or indirectly. This helps us to define the impact of artifacts that use
sun.misc.Unsafe, and thus the impact sun.misc.Unsafe has on real-world code overall.

Our analysis found 48,490 uses of sun.misc.Unsafe — 48,139 call sites and 351 field

11

12 3.2 What is the Unsafe APl Used for?

accesses — distributed over 817 different artifacts. This initial result shows that Unsafe is
indeed used in third-party code.

We use the dependency information to determine the impact of the artifacts that use
sun.misc.Unsafe. We rank all artifacts according to their impact (the number of artifacts
that directly or indirectly depend on them). High-impact artifacts are important; a safety
violation in them can affect any artifact that directly or indirectly depends on them. We find
that while overall about 1% of artifacts directly use Unsafe, for the top-ranked 1000 artifacts,
3% directly use Unsafe. Thus, Unsafe usage is particularly prevalent in high-impact artifacts,
artifacts that can affect many other artifacts.

Moreover, we found that 21,297 artifacts (47% of the 47,127 artifacts with dependency
information, or 25% of the 86,479 artifacts we downloaded) directly or indirectly depend
on sun.misc.Unsafe. Excluding language artifacts, numbers do not change much: Instead
of 21,297 artifacts, we found 19, 173 artifacts, 41% of the artifacts with dependency infor-
mation, or 22% of artifacts downloaded. Thus, sun.misc.Unsafe usage in third-party code
indeed impacts a large fraction of projects.

3.2 What is the Unsafe API Used for?

In response to (How and when are Unsafe features used?), many of the patterns we
found indicate that Unsafe is used to achieve better performance or to implement function-
ality not otherwise available in the JAvA language or standard library.

However, many of the patterns described can be implemented using APIs already pro-
vided in the JAvVA standard library. In addition, there are several existing proposals to improve
the situation with Unsafe already under development within the JAVA community. Oracle
software engineer Paul |[Sandoz| [2014]] performed a survey on the OpenJDK mailing list to
study how Unsafe is use(ﬂ and describes several of these proposals.

A summary of the patterns with existing and proposed alternatives to Unsafe is shown
in Table The table consists of the following columns: The Pattern column indicates
the name of the pattern. The next three columns indicate whether the pattern could be im-
plemented either as a language feature (Lang), virtual machine extension (VM), or library
extension (Lib). The Ref column indicates that the pattern can be implemented using re-
flection. A bullet (o) indicates that an alternative exists in the JAVA language or API. A check
mark (v') indicates that there is a proposed alternative for JAVA.

Many JAVA APIs already exist that provide functionality similar to Unsafe. Indeed, these
APIs are often implemented using Unsafe under the hood, but they are designed to be used
safely. They maintain invariants or perform runtime checks to ensure that their use of Unsafe
is safe. Because of this overhead, using Unsafe directly should in principle provide better
performance at the cost of safety.

For example, the java.util.concurrent package provides classes for safely performing atomic
operations on fields and array elements, as well as several synchronizer classes. These classes

'http://www.infoq.com/news/2014/02/Unsafe-Survey

http://www.infoq.com/news/2014/02/Unsafe-Survey

13 3.2 What is the Unsafe APl Used for?

Table 3.1: Patterns and their alternatives. A bullet (e) indicates that an alternative exists in
the JAvA language or API. A check mark (v') indicates that there is a proposed alternative
for JAVA.

Pattern Lang VM Lib Ref
1 Allocate an Object without Invoking a Constructor v
2 Process Byte Arrays in Block v
3 Atomic Operations °
4 Strongly Consistent Shared Variables v
5 Park/Unpark Threads .
6 Update Final Fields .
7 Non-Lexically-Scoped Monitors v
8 Serialization/Deserialization v . °
9 Foreign Data Access and Object Marshaling v .
10 Throw Checked Exceptions without Being Declared v
11 Get the Size of an Object or an Array v v
12 Large Arrays and Off-Heap Data Structures v v
13 Get Memory Page Size v v
14 Load Class without Security Checks v v

can be used instead of Unsafe to implement atomic operations or strongly consistent shared
variables. The standard library class java.util.concurrent.locks.LockSupport provides park and
unpark methods to be used for implementing locks. These methods are just thin wrappers
around the sun.misc.Unsafe methods of the same name and could be used to implement the
park pattern. JAVA already supports serialization of objects using the java.lang.Serializable
and java.io.ObjectOutputStream API. The now-deleted JEP 187 Serialization 2.0 proposaﬂﬂ
addresses some of the issues with JAVA serialization.

Because volatile variable accesses compile to code that issues memory fences, strongly
consistent variables can be implemented by accessing volatile variables. However, the fences
generated for volatile variables may be stronger (and therefore less performant) than are
needed for a given application. Indeed, the Unsafe Put Ordered and Fence methods were
likely introduced to improve performance versus volatile variables. The accepted proposal
JEP 193 (Enhanced Volatiles [Lea, [2014]]) introduces variable handles, which allow atomic
operations on fields and array elements.

Many of the patterns can be implemented using the reflection API, albeit with lower
performance than with Unsafe [[Korland et al., 2010]. For example, reflection can be used
for accessing object fields to implement serialization. Similarly, reflection can be used in
combination with java.nio.ByteBuffer and related classes for data marshaling. The reflection
API can also be used to write to final fields. However, this feature of the reflection API makes

2http://mail.openjdk.java.net/pipermail/core-1libs-dev/2014-January/024589.html
Shttp://web.archive.org/web/20140702193924/http://openjdk.java.net/jeps/187

http://mail.openjdk.java.net/pipermail/core-libs-dev/2014-January/024589.html
http://web.archive.org/web/20140702193924/http://openjdk.java.net/jeps/187

14 3.2 What is the Unsafe APl Used for?

sense only during deserialization or during object construction and may have unpredictable
behavior in other cases.

Writing a final field through reflection may not ensure the write becomes visible to other
threads that might have cached the final field, and it may not work correctly at all if the VM
performs compiler optimizations such as constant propagation on final fields.

Many patterns use Unsafe to use memory more efficiently. Using structs or packed
objects can reduce memory overhead by eliminating object headers and other per-object
overhead. Java has no native support for structs, but they can be implemented with byte
buffers or with JNI

The Arrays 2.0 proposal [Rose, 2012] and the value types proposal [Rose et al., 2014
address the large arrays pattern. Project Sumatra [[OpenJDK, 2013]] proposes features for
accessing GPUs and other accelerators, one of the use cases for foreign data access. Related
proposals include JEP 191 [[Nutter, [2014]], which proposes a new foreign function interface
for Java, and Project Panama [Rose, [2014]], which supports native data access from the JVM.

A sizeof feature could be introduced into the language or into the standard library. A use
case for this feature includes cache management implementations. A higher-level alternative
might be to provide an API for memory usage tracking in the JVM. A page size method could
be added to the standard library, perhaps in the java.nio package, which already includes
MappedByteBuffer to access memory-mapped storage.

Other patterns may require JAVA language changes. For instance, the language could be
changed to not require methods to declare the exceptions they throw, obviating the need for
Unsafe in this case. Indeed, there is a long-running debat about the software-engineering
benefits of checked exceptions. C#, for instance, does not require that exceptions be declared
in method signatures at all. One alternative not requiring a language change is to use JAVA
generics instead. Because of type erasure, a checked exception can be coerced unsafely into
an unchecked exception and thrown.

Changing the language to support allocation without constructors or non-lexically-scoped
monitors is feasible. However, implementation of these features must be done carefully to
ensure object invariants are properly maintained. In particular, supporting arbitrary un-
constructed objects can require type system changes to prevent usage of the object before
initialization [[Qi and Myers, |2009]]. Limiting the scope of this feature to support deserializa-
tion only may be a good compromise and has been suggested in the JEP 187 Serialization
2.0 proposal.

Since Unsafe is often used simply for performance reasons, virtual machine optimizations
can reduce the need for Unsafe. For example, the JVM’s runtime compiler can be extended
with optimizations for vectorizing byte array accesses, eliminating the motivation to use
Unsafe to process byte arrays. Many patterns use Unsafe to use memory more efficiently. This
could be ameliorated with lower GC overhead. There are proposals for this, for instance JEP
189 Shenandoah: Low Pause GC [[Christine H. Flood, |2014]].

4http://www.oracle.com/technetwork/java/jvmls2013sciam-2013525. pdf
Shttp://www.1ibm.com/developerworks/library/j-jtp05254/

http://www.oracle.com/technetwork/java/jvmls2013sciam-2013525.pdf
http://www.ibm.com/developerworks/library/j-jtp05254/

Chapter 4

Casting Operations in the Wild

Casting operations provide the means to escape the static type system. But do they pose a
problem for developers? Several studies [[Kechagia and Spinellis, |2014; |Coelho et al., [2015};
Zhitnitsky, |2016]] show that ClassCastException is in top 10 of exceptions being thrown
when analysing stack traces. To illustrate the sort of problem developers have when ap-
plying casting conversions, we performed a simple search for commits including the term
ClassCastException on GitHub. The search returns about 150K resultsE] We have included
here a few source code results as an exampleE]

Forgotten Guard. The following listingE] shows a cast that throws ClassCastException
because the developer forgot to include a guard. In this case, the developer fixed the error
by introducing a guard on the cast with instanceof.

1 @ -41,6 +41,8 @@ public SCMTypeColumn() {

2 3

3 public String getScmType (@SuppressWarnings("rawtypes”) Job job) {
4 if (! (job instanceof AbstractProject<?, ?7>))

5 + return "";

6 AbstractProject<?, ?> project = (AbstractProject<?, ?>) job;

7 return project.getScm().getDescriptor().getDisplayName();

8 }

Wrong Cast Target. In the next examplef_r] the CustomFileFilter is an inner static class
inside JCustomFileFilter. Notice the cast happens inside an equals method, where this
idiom is well known. But the developer has used the outer — wrong — class to cast to.

1 @ -156,7 +156,7 @@ public boolean equals(Object obj) {

2 if (getClass() != obj.getClass()) {

3 return false;

4 3

5 - final JCustomFileChooser other = (JCustomFileChooser) obj;

6 + final CustomFileFilter other = (CustomFileFilter) obj;

'https://github.com/search?1=Java&q=ClassCastException&type=Commits
2To easily spot what the developer has changed to fix the ClassCastException, we present each source code

excerpt using the Git commit diff as reported by GitHub.
Shttps://github.com/jenkinsci/extra-columns-plugin/commit/@2d10bd1fcbb2e656dadbibiec54208b0cc1cbb2
“https://github.com/GoldenGnu/jeveassets/commit/5f4750bc8cfa7eed8addlefd8add2cd2ccobds3

15

https://github.com/search?l=Java&q=ClassCastException&type=Commits
https://github.com/jenkinsci/extra-columns-plugin/commit/02d10bd1fcbb2e656da9b1b4ec54208b0cc1cbb2
https://github.com/GoldenGnu/jeveassets/commit/5f4750bc8cfa7eed8ad01efd8add2cd2cc9bd831

16 4.1 Overview of our Study

7 if (!Objects.equals(this.extensions, other.extensions)) {
8 return false;

9 3

Generic Type Inference Mismatch. In the following listing,E] the dynamic property
"peer.p2p.pingInterval” (lines 5 and 6) has type int. To fix the error, the developer
only changed the type of the literal 5: from long to int.

@@ -281,7 +281,7 @@ private void startTimers() {

} catch (Throwable t) {
logger.error ("Unhandled_exception”, t);

- }, 2, config.getProperty("peer.p2p.pinglnterval”, 5L), TimeUnit.SECONDS);
+ }, 2, config.getProperty("peer.p2p.pinglnterval”, 5), TimeUnit.SECONDS);

1
2
3
4 }
5
6
7

Looking at the definition of the getProperty method belowEI it obtains a dynamic prop-
erty given a property name. If it finds a value, return it. Otherwise, returns the default value
(second argument). But the return type of getProperty is a generic type inferred by the
type of the default value, in this case, long. The ClassCastException is then thrown in line
5, when casting java.lang.Integer to java.lang.Long. To then fix the bug, the developer
changed the type of the literal: from long to int.

1 public <T> T getProperty(String propName, T defaultValue) {
2 if (!config.hasPath(propName)) return defaultValue;

3 String string = config.getString(propName);

4 if (string.trim().isEmpty()) return defaultValue;

5 return (T) config.getAnyRef (propName);

6 }

This indicates that casts represents a source of errors for developers. We present here
our partial results for the cast study. First we give an overview of the study in while
gives an estimation of how often a cast operator is used. Finally, introduces the
methodology we plan to use to discover cast usage patterns.

4.1 Overview of our Study

We propose to answer the following question: How and when do developers need to escape the
type system? The cast operator in JAVA provides the means to view a reference at a different
type as it was declared. Upcasts conversions are done automatically by the compiler. In
the case of downcasts, a check is inserted at run-time to verify that the conversion is sound,
thus escaping the type system. Why is so? Therefore, we believe we should care about how
the casting operations are used in the wild. Specifically, we want to answer the following
research questions:

Shttps://github.com/ethereum/ethereumj/commit/224e65b9b4ddch46198a6f8faf69edc65d34d382
Shttps://github.com/ethereum/ethereumj/blob/224e65b9b4ddcb46198a6f8faf69edc65d34d382/
ethereumj-core/src/main/java/org/ethereum/config/SystemProperties. java#L312

https://github.com/ethereum/ethereumj/commit/224e65b9b4ddcb46198a6f8faf69edc65d34d382
https://github.com/ethereum/ethereumj/blob/224e65b9b4ddcb46198a6f8faf69edc65d34d382/ethereumj-core/src/main/java/org/ethereum/config/SystemProperties.java#L312
https://github.com/ethereum/ethereumj/blob/224e65b9b4ddcb46198a6f8faf69edc65d34d382/ethereumj-core/src/main/java/org/ethereum/config/SystemProperties.java#L312

17 4.2 |s the Cast Operator used?

CRQ1 : How frequently is casting used in common application code? We want to
understand to what extent application code actually uses casting operations.

CRQ2 : How and when casts are used? If casts are actually used in application code,
we want to know how and why developers need to escape the type system.

CRQ3 : How recurrent are the patterns for which casts are used? In addition to un-
derstand how and why casts are used, we want to measure how often developers
need to resort to certain idioms to solve a particular problem.

To answer the above questions, we need to determine whether and how casting opera-
tions are actually used in real-world JAvA applications. To achieve our goal, several elements
are needed.

Source Code Analysis. We have implemented our study using the QL query language: “a
declarative, object-oriented logic programming language for querying complex, potentially
recursive data structures encoded in a relational data model” [[Avgustinov et al., 2016[]. QL
allows us to analyze programs at the source code level by abstracting the code sources into a
Datalog model. Besides providing structural data for programs, i.e., ASTs, QL has the ability
to query static types and perform data-flow analysis. To run our QL queries, we have used
the service provided by Semmlem

Projects. As a code base representative of the “real world”, we have chosen open-source
projects hosted in GitHub, the world-most popular source code management repository. So
far, we have analyzed 24 JAVA projects in Igtm. We plan to scale up our analysis to the whole
Igtm project database.

Usage Pattern Detection. After all cast instances are found, we analyze this information
to discover usage patterns. QL allows us to automatically categorize cast use cases into
patterns. This methodology is described in section 4.3

Our list of patterns is not exhaustive. Due to the nature of the cast operator, some casts
were uncategorized as they would need a whole program analysis, e.g., including libraries
in the analysis.

4.2 Is the Cast Operator used?

To answer (How frequently is casting used in common application code?) we want
to know how many cast instances are used in a given project. To this end, we gather the
following statistics using QL. We show them here to give an estimation of the size of the code
base being analized. As mentioned above, these results are preliminary. We plan to scale up
our analysis to the whole Igtm project database.

“https://lgtm.com/

https://lgtm.com/

18 4.3 Finding Casts Usage Patterns

The Number of Methods and Number of

Methods w/Cast values includes only methods Description Value
with a body, i.e., not abstract, nor native. The =~ Number of Projects 24
Number of Exprs value show how many expres- Number of LOC 1,439,913
sions there are in the ASTs of all source code Number of Methods 121,665
analyzed. Finally, the Number of Casts value Number of Methods w/Cast 6,091
indicates how many cast expressions (subtype =~ Number of Exprs 4,324,652
of Expr as defined by QL) were found. Number of Casts 8,627

For our study, we are interested in both up-
casts and downcasts. Thus, we exclude primi-
tive conversions in our study (§5.1.2, §5.1.3, 85.1.4, and §5.1.13 from the JAvA Language
Speciﬁcatiorﬁ). The Number of Casts value shown above include only reference conversions.
Primitive conversions are always safe (in terms of throwing ClassCastException. A primi-
tive conversion happens when both the type of the expression to be casted to and the type
to cast to are primitive types. Note that with this definition, we include in our study boxed
types. Since boxed types are reference types (and therefore not necessarily safe) we want to
include them in our analysis.

We want to know how many cast instances there are across projects. Thus, we have
computed the ratio between methods containing at least a cast over total number of methods
— with implementation — in a given project. The following chart shows this ratio for all
analyzed projects:

3
.
.

0.025 0.050 0.075
Methods with casts over total number of methods
All projects have less than 10% of methods with at least a cast. Overall, around a 3.92%
of methods contain at least one cast operation. This means there is a low density of casts.
Given the fact that generics were introduced JAVA 5, this can explain this low density.
Nevertheless, casts are still used. We want to understand why there are casts instances
and how often the use cases that leads to casts are used (CRQ3). The following

sections give an answer to these questions.

4.3 Finding Casts Usage Patterns

To answer both research questions [CRQ2| (How and when casts are used?) and [CRQ3| (How
recurrent are the patterns for which casts are used?) we have used the QL query language

8https://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html

https://docs.oracle.com/javase/specs/jls/se7/html/jls-5.html

19 4.3 Finding Casts Usage Patterns

within the Igtm service to look for cast instances. As mentioned in section QL treats
primitive conversions as casts. Thus, a preliminary step is to exclude them as cast instances.
The following QL query shows how to retrieve all relevant cast expressions:

1 import java

2 from CastExpr ce where not (

3 ce.getExpr().getType() instanceof PrimitiveType and
4 ce.getTypeExpr().getType() instanceof PrimitiveType
5) select ce

Listing 4.1: QL query to retrieve all relevant cast expressions.

Figure depicts our methodology:.

We have used this initial result as a start- -
ing point for our analysis. Afterwards, "7'[il Qs }7 Patterns

we select a random sample for manual in-

spection. We manually inspected the men- Inspect Casts
tioned casts trying to understand why and without Pattern
how they were used.]

By manually inspecting several casts
instances, we observe that certain charac-
teristics appear often, e.g., a cast in a over-
ridden method, or a cast guarded by an
instanceof. We then tag cast instances
based on these observations. We imple-
ment a QL predicate that detects them and
proceed to refine our query with this new
tag predicate. After a new tag is added, [Stop }
the query is run again to iterate over the

Update
Patterns

new results. Figure 4.1: Process to discover cast tags and
Whenever we detect that those tags patterns.

appear often, we further inspect the source

code to check that is indeed a pattern. We have formalized the structure of each pattern as a
QL predicate based on those tags. Similarly with tags, after a new pattern is added, the query
is run again to inspect the casts without pattern. To sum up, our methodology iterates over
the results until no more patterns can be detected. The final QL query is available onlineﬂ

Manual Categorization of Patterns

Some code patterns might be too difficult to express in terms of QL queries. This situation
arises when the knowledge to determine the pattern is outside the source code, e.g., in con-
figuration files or library call sites. Thus, in those cases we can only acknowledge that a
pattern exists, but not how recurrent it is.

%https://gitlab.com/acuarica/java-cast-queries/blob/master/obs.ql

https://gitlab.com/acuarica/java-cast-queries/blob/master/obs.ql

Chapter 5

Conclusions

In this proposal we have presented our research plan. We have devised common usage
patterns for the JAvA Unsafe API. We discussed several current and future alternatives to
improve the JAvA language. This work has been published in [Mastrangelo et al.,[2015]]. On
the other hand, we plan to complement our Unsafe API study with our casting study. We
are devising common usage patterns that involve the casting operator. Having a taxonomy
of usage patterns — for both the Unsafe API and casting — can shed light on how JAvA
developers circumvent the static type system’s constraints.

20

Bibliography

Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive scale us-
ing language modeling. In 2013 10th Working Conference on Mining Software Repositories
(MSR), pages 207-216, San Francisco, CA, USA, May 2013. IEEE. ISBN 978-1-4673-2936-
1 978-1-4799-0345-0. doi: 10.1109/MSR.2013.6624029.

Nada Amin and Ross Tate. Java and Scala’s Type Systems Are Unsound: The Existential
Crisis of Null Pointers. In Proceedings of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016,
pages 838-848, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4444-9. doi: 10.
1145/2983990.2984004.

Francesca Arcelli, Fabrizio Perin, Claudia Raibulet, and Stefano Ravani. Design Pattern De-
tection in Java Systems: A Dynamic Analysis Based Approach. In Evaluation of Novel
Approaches to Software Engineering, Communications in Computer and Information Sci-
ence, pages 163-179. Springer, Berlin, Heidelberg, May 2008. ISBN 978-3-642-14818-7
978-3-642-14819-4. doi: 10.1007/978-3-642-14819-4 12.

Muhammad Asaduzzaman, Muhammad Ahasanuzzaman, Chanchal K. Roy, and Kevin A.
Schneider. How Developers Use Exception Handling in Java? In Proceedings of the 13th
International Conference on Mining Software Repositories, MSR 16, pages 516-519, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-4186-8. doi: 10.1145/2901739.2903500.

Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schifer. QL: Object-oriented
Queries on Relational Data. In Shriram Krishnamurthi and Benjamin S. Lerner, editors,
30th European Conference on Object-Oriented Programming (ECOOP 2016), volume 56 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 2:1-2:25, Dagstuhl, Ger-
many, 2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-014-
9. doi: 10.4230/LIPIcs.ECOOP2016.2.

S. Bajracharya, J. Ossher, and Cristina Lopes. Sourcerer: An internet-scale software repos-
itory. In Tools and Evaluation 2009 ICSE Workshop on Search-Driven Development-Users,
Infrastructure, pages 1-4, May 2009. doi: 10.1109/SUITE.2009.5070010.

I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using abstract
syntax trees. In Proceedings. International Conference on Software Maintenance (Cat. No.

21

22 Bibliography

98CB36272), pages 368-377, Bethesda, MD, USA, 1998. IEEE Comput. Soc. ISBN 978-0-
8186-8779-2. doi: 10.1109/ICSM.1998.738528.

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley,
Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin
Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanovi¢, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The DaCapo
Benchmarks: Java Benchmarking Development and Analysis. In Proceedings of the 21st
Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications, OOPSLA '06, pages 169-190, New York, NY, USA, 2006. ACM. ISBN 978-1-
59593-348-5. doi: 10.1145/1167473.1167488.

S. Brandauer and T. Wrigstad. Spencer: Interactive Heap Analysis for the Masses. In 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), pages
113-123, May 2017. doi: 10.1109/MSR.2017.35.

Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A code manipulation tool to
implement adaptable systems. In In Adaptable and Extensible Component Systems, 2002.

Timothy A. Budd, Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Theoret-
ical and Empirical Studies on Using Program Mutation to Test the Functional Correctness
of Programs. In Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’80, pages 220-233, New York, NY, USA, 1980. ACM. ISBN
978-0-89791-011-8. doi: 10.1145/567446.567468.

Oscar Callati, Romain Robbes, Eric Tanter, and David Rothlisberger. How (and why) develop-
ers use the dynamic features of programming languages: The case of smalltalk. Empirical
Software Engineering, 18(6):1156-1194, December 2013. ISSN 1382-3256, 1573-7616.
doi: 10.1007/510664-012-9203-2.

Xiliang Chen, Alice Yuchen Wang, and Ewan Tempero. A Replication and Reproduction of
Code Clone Detection Studies. page 10.

R. J. Chevance and T. Heidet. Static Profile and Dynamic Behavior of COBOL Programs.
SIGPLAN Not., 13(4):44-57, April 1978. ISSN 0362-1340. doi: 10.1145/953411.953414.

Roman Kennke Christine H. Flood. JEP 189: Shenandoah: An Ultra-Low-Pause-Time
Garbage Collector. 2014.

Roberta Coelho, Lucas Almeida, Georgios Gousios, and Arie van Deursen. Unveiling Ex-
ception Handling Bug Hazards in Android Based on GitHub and Google Code Issues. In
Proceedings of the 12th Working Conference on Mining Software Repositories, MSR ’15, pages
134-145, Piscataway, NJ, USA, 2015. IEEE Press. ISBN 978-0-7695-5594-2.

Tal Cohen and Itay Maman. JTL — the Java Tools Language. page 20.

23 Bibliography

Robert P Cook and Insup Lee. A contextual analysis of Pascal programs. Software: Practice
and Experience, 12(2):195-203, February 1982. ISSN 1097-024X. doi: 10.1002/spe.
4380120209.

Diego Costa, Artur Andrzejak, Janos Seboek, and David Lo. Empirical Study of Usage and
Performance of Java Collections. In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering, ICPE ’17, pages 389-400, New York, NY, USA,
2017. ACM. ISBN 978-1-4503-4404-3. doi: 10.1145/3030207.3030221.

Johannes Dahse and Thorsten Holz. Experience Report: An Empirical Study of PHP Security
Mechanism Usage. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis, ISSTA 2015, pages 60-70, New York, NY, USA, 2015. ACM. ISBN 978-1-
4503-3620-8. doi: 10.1145/2771783.2771787.

Oege de Moor, M. Verbaere, E. Hajiyev, P Avgustinov, T. Ekman, N. Ongkingco, D. Sereni, and
J. Tibble. Keynote Address: .QL for Source Code Analysis. In Seventh IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM 2007), pages 3-16,
September 2007. doi: 10.1109/SCAM.2007.31.

Coen De Roover, Carlos Noguera, Andy Kellens, and Vivane Jonckers. The SOUL Tool Suite
for Querying Programs in Symbiosis with Eclipse. In Proceedings of the 9th International
Conference on Principles and Practice of Programming in Java, PPPJ '11, pages 71-80, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0935-6. doi: 10.1145/2093157.2093168.

Sylvia Dieckmann and Urs Hélzle. A study of the Allocation Behavior of the SPECjvm98 Java
Benchmarks. In Rachid Guerraoui, editor, ECOOP’ 99 — Object-Oriented Programming,
Lecture Notes in Computer Science, pages 92-115. Springer Berlin Heidelberg, 1999. ISBN
978-3-540-48743-2.

J. Dietrich, K. Jezek, and P Brada. Broken promises: An empirical study into evolution
problems in Java programs caused by library upgrades. In 2014 Software Evolution Week -
IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-
WCRE), pages 64-73, February 2014. doi: 10.1109/CSMR-WCRE.2014.6747226.

Jens Dietrich, David J. Pearce, Kamil Jezek, and Premek Brada. Contracts in the Wild: A
Study of Java Programs. In Peter Miiller, editor, 31st European Conference on Object-
Oriented Programming (ECOOP 2017), volume 74 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 9:1-9:29, Dagstuhl, Germany, 2017a. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. ISBN 978-3-95977-035-4. doi: 10.4230/LIPIcs.ECOOP2017.9.

Jens Dietrich, Henrik Schole, Li Sui, and Ewan Tempero. XCorpus — An executable Corpus
of Java Programs. The Journal of Object Technology, 16(4):1:1, 2017b. ISSN 1660-1769.
doi: 10.5381/jot.2017.16.4.al.

24 Bibliography

M. Doyle and J. Walden. An Empirical Study of the Evolution of PHP Web Application Se-
curity. In 2011 Third International Workshop on Security Measurements and Metrics, pages
11-20, September 2011. doi: 10.1109/Metrisec.2011.18.

R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: A language and infrastructure for
analyzing ultra-large-scale software repositories. In 2013 35th International Conference
on Software Engineering (ICSE), pages 422-431, May 2013a. doi: 10.1109/ICSE.2013.
6606588.

Robert Dyer, Hridesh Rajan, and Tien N. Nguyen. Declarative Visitors to Ease Fine-grained
Source Code Mining with Full History on Billions of AST Nodes. In Proceedings of the 12th
International Conference on Generative Programming: Concepts & Experiences, GPCE 13,
pages 23-32, New York, NY, USA, 2013b. ACM. ISBN 978-1-4503-2373-4. doi: 10.1145/
2517208.2517226.

Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N. Nguyen. Mining Billions of AST
Nodes to Study Actual and Potential Usage of Java Language Features. In Proceedings of the
36th International Conference on Software Engineering, ICSE 2014, pages 779-790, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2756-5. doi: 10.1145/2568225.2568295.

Justin E Forrester and Barton P Miller. An Empirical Study of the Robustness of Windows NT
Applications Using Random Testing. page 10, 2000.

Milos Gligoric, Darko Marinov, and Sam Kamin. CoDeSe: Fast Deserialization via Code
Generation. In Proceedings of the 2011 International Symposium on Software Testing and
Analysis, ISSTA ’11, pages 298-308, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0562-4. doi: 10.1145/2001420.2001456.

Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. Checking App Behavior
Against App Descriptions. In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 1025-1035, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2756-5. doi: 10.1145/2568225.2568276.

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java® Language
Specification. page 670.

Georgios Gousios. The GHTorent Dataset and Tool Suite. In Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR "13, pages 233-236, Piscataway, NJ, USA,
2013. IEEE Press. ISBN 978-1-4673-2936-1.

Georgios Gousios, Bogdan Vasilescu, Alexander Serebrenik, and Andy Zaidman. Lean GHTor-
rent: GitHub Data on Demand. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pages 384-387, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2863-0. doi: 10.1145/2597073.2597126.

25 Bibliography

Mark Grechanik, Collin McMillan, Luca DeFerrari, Marco Comi, Stefano Crespi, Denys
Poshyvanyk, Chen Fu, Qing Xie, and Carlo Ghezzi. An Empirical Investigation into a
Large-scale Java Open Source Code Repository. In Proceedings of the 2010 ACM-IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement, ESEM 10,
pages 11:1-11:10, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0039-1. doi:
10.1145/1852786.1852801.

John Hammond. BASIC - an evaluation of processing methods and a study of some programs.
Software: Practice and Experience, 7(6):697-711, November 1977. ISSN 1097-024X. doi:
10.1002/spe.4380070605.

I. R. Harlin, H. Washizaki, and Y. Fukazawa. Impact of Using a Static-Type System in Com-
puter Programming. In 2017 IEEE 18th International Symposium on High Assurance Systems
Engineering (HASE), pages 116-119, January 2017. doi: 10.1109/HASE.2017.17.

Mark Hills, Paul Klint, and Jurgen Vinju. An Empirical Study of PHP Feature Usage: A
Static Analysis Perspective. In Proceedings of the 2013 International Symposium on Software
Testing and Analysis, ISSTA 2013, pages 325-335, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-2159-4. doi: 10.1145/2483760.2483786.

Lei Hu and Kamran Sartipi. Dynamic Analysis and Design Pattern Detection in Java Pro-
grams. In 20th International Conference on Software Engineering and Knowledge Engineer-
ing, SEKE 2008, pages 842-846, January 2008.

Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. An Empirical Study of
Privacy-violating Information Flows in JavaScript Web Applications. In Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS ’10, pages 270-
283, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0245-6. doi: 10.1145/1866307.
1866339.

Maria Kechagia and Diomidis Spinellis. Undocumented and Unchecked: Exceptions That
Spell Trouble. In Proceedings of the 11th Working Conference on Mining Software Reposito-
ries, MSR 2014, pages 312-315, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2863-
0. doi: 10.1145/2597073.2597089.

Mary Beth Kery, Claire Le Goues, and Brad A. Myers. Examining Programmer Practices
for Locally Handling Exceptions. In Proceedings of the 13th International Conference on
Mining Software Repositories, MSR ’16, pages 484-487, New York, NY, USA, 2016. ACM.
ISBN 978-1-4503-4186-8. doi: 10.1145/2901739.2903497.

P Klint, T. v d Storm, and J. Vinju. RASCAL: A Domain Specific Language for Source Code
Analysis and Manipulation. In 2009 Ninth IEEE International Working Conference on Source
Code Analysis and Manipulation, pages 168-177, September 2009. doi: 10.1109/SCAM.
2009.28.

26 Bibliography

Donald E. Knuth. An empirical study of FORTRAN programs. Software: Practice and Experi-
ence, 1(2):105-133, April 1971. ISSN 1097-024X. doi: 10.1002/spe.4380010203.

Goh Kondoh and Tamiya Onodera. Finding Bugs in Java Native Interface Programs. In
Proceedings of the 2008 International Symposium on Software Testing and Analysis, ISSTA
’08, pages 109-118, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-050-0. doi:
10.1145/1390630.1390645.

Guy Korland, Nir Shavit, and Pascal Felber. Noninvasive concurrency with Java STM. January
2010.

Eugene Kuleshov. Using the ASM Framework to Implement Common Java Bytecode Transfor-
mation Patterns. 2007.

D. Landman, A. Serebrenik, and J. J. Vinju. Challenges for Static Analysis of Java Reflection
- Literature Review and Empirical Study. In 2017 IEEE /ACM 39th International Conference
on Software Engineering (ICSE), pages 507-518, May 2017. doi: 10.1109/ICSE.2017.53.

Thomas D. LaToza and Brad A. Myers. Developers Ask Reachability Questions. In Proceedings
of the 32Nd ACM /IEEE International Conference on Software Engineering - Volume 1, ICSE
"10, pages 185-194, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-719-6. doi:
10.1145/1806799.1806829.

Doug Lea. JEP 193: Enhanced Volatiles. 2014.

Siliang Li and Gang Tan. Finding Bugs in Exceptional Situations of JNI Programs. In
Proceedings of the 16th ACM Conference on Computer and Communications Security, CCS
’09, pages 442-452, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-894-0. doi:
10.1145/1653662.1653716.

Benjamin Livshits. Improving Software Security with Precise Static and Runtime Analysis. PhD
thesis, Stanford University, Stanford, California, 2006.

Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection Analysis for Java. In
Programming Languages and Systems, Lecture Notes in Computer Science, pages 139-
160. Springer, Berlin, Heidelberg, November 2005. ISBN 978-3-540-29735-2 978-3-540-
32247-4. doi: 10.1007/11575467 11.

Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny, Hitesh Saj-
nani, and Jan Vitek. DéJaVvu: A Map of Code Duplicates on GitHub. Proc. ACM Program.
Lang., 1(OOPSLA):84:1-84:28, October 2017. ISSN 2475-1421. doi: 10.1145/3133908.

Magnus Madsen and Esben Andreasen. String Analysis for Dynamic Field Access. In David
Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C.
Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan,
Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, and Albert Cohen,

27 Bibliography

editors, Compiler Construction, volume 8409, pages 197-217. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014. ISBN 978-3-642-54806-2 978-3-642-54807-9. doi: 10.1007/
978-3-642-54807-9_12.

Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza, Matthias Hauswirth, and
Nathaniel Nystrom. Use at Your Own Risk: The Java Unsafe API in the Wild. In Proceed-
ings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, pages 695-710, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-3689-5. doi: 10.1145/2814270.2814313.

Clemens Mayer, Stefan Hanenberg, Romain Robbes, Eric Tanter, and Andreas Stefik. An Em-
pirical Study of the Influence of Static Type Systems on the Usability of Undocumented
Software. In Proceedings of the ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA 12, pages 683-702, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1561-6. doi: 10.1145/2384616.2384666.

Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. Understanding the
Use of Lambda Expressions in Java. Proc. ACM Program. Lang., 1(OOPSLA):85:1-85:31,
October 2017. ISSN 2475-1421. doi: 10.1145/3133909.

Barton P Miller, Louis Fredriksen, and Bryan So. An empirical study of the reliability of UNIX
utilities. Communications of the ACM, 33(12):32—-44, December 1990. ISSN 00010782.
doi: 10.1145/96267.96279.

Barton P Miller, David Koski, Cjin Pheow, Lee Vivekananda Maganty, Ravi Murthy, Ajitkumar
Natarajan, and Jeff Steidl. Fuzz revisited: A re-examination of the reliability of UNIX
utilities and services. Technical report, 1995.

Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. Diversity in Software En-
gineering Research. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 466-476, New York, NY, USA, 2013. ACM. ISBN 978-
1-4503-2237-9. doi: 10.1145/2491411.2491415.

Meiyappan Nagappan, Romain Robbes, Yasutaka Kamei, Eric Tanter, Shane McIntosh, Au-
dris Mockus, and Ahmed E. Hassan. An Empirical Study of Goto in C Code from GitHub
Repositories. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 404-414, New York, NY, USA, 2015. ACM. ISBN
978-1-4503-3675-8. doi: 10.1145/2786805.2786834.

Suman Nakshatri, Maithri Hegde, and Sahithi Thandra. Analysis of Exception Handling
Patterns in Java Projects: An Empirical Study. In Proceedings of the 13th International
Conference on Mining Software Repositories, MSR ’16, pages 500-503, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-4186-8. doi: 10.1145/2901739.2903499.

Charles Oliver Nutter. JEP 191: Foreign Function Interface. 2014.

28 Bibliography

OpenJDK. Project Sumatra. 2013.

E Palomba, D. Di Nucci, M. Tufano, G. Bavota, R. Oliveto, D. Poshyvanyk, and A. De Lucia.
Landfill: An Open Dataset of Code Smells with Public Evaluation. In 2015 IEEE/ACM
12th Working Conference on Mining Software Repositories, pages 482-485, May 2015. doi:
10.1109/MSR.2015.69.

Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrea De Lucia,
and Denys Poshyvanyk. Detecting bad smells in source code using change history informa-
tion. In 2013 28th IEEE /ACM International Conference on Automated Software Engineering
(ASE), pages 268-278, Silicon Valley, CA, USA, November 2013. IEEE. ISBN 978-1-4799-
0215-6. doi: 10.1109/ASE.2013.6693086.

Chris Parnin, Christian Bird, and Emerson Murphy-Hill. Java Generics Adoption: How New
Features Are Introduced, Championed, or Ignored. In Proceedings of the 8th Working Con-
ference on Mining Software Repositories, MSR '11, pages 3-12, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0574-7. doi: 10.1145/1985441.1985446.

Chris Parnin, Christian Bird, and Emerson Murphy-Hill. Adoption and use of Java gener-
ics. Empirical Software Engineering, 18(6):1047-1089, December 2013. ISSN 1382-3256,
1573-7616. doi: 10.1007/s10664-012-9236-6.

Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition, 2002.
ISBN 978-0-262-16209-8.

D. Posnett, C. Bird, and P Devanbu. THEX: Mining metapatterns from java. In 2010 7th
IEEE Working Conference on Mining Software Repositories (MSR 2010), pages 122-125,
May 2010. doi: 10.1109/MSR.2010.5463349.

L. Prechelt. An empirical comparison of seven programming languages. Computer, 33(10):
23-29, October 2000. ISSN 0018-9162. doi: 10.1109/2.876288.

M Pukall, C Kaestner, W Cazzola, S Goetz, A Grebhahn, and R Schroeter. Flexible Dynamic
Software Updates of Java Applications: Tool Support and Case Study. page 39.

Xin Qi and Andrew C. Myers. Masked Types for Sound Object Initialization. In Proceedings
of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL’09, pages 53-65, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-379-2.
doi: 10.1145/1480881.1480890.

Baishakhi Ray, Daryl Posnett, Premkumar Devanbu, and Vladimir Filkov. A Large-scale Study
of Programming Languages and Code Quality in GitHub. Commun. ACM, 60(10):91-100,
September 2017. ISSN 0001-0782. doi: 10.1145/3126905.

M. Rebougas, G. Pinto, E Ebert, W. Torres, A. Serebrenik, and E Castor. An Empirical Study on
the Usage of the Swift Programming Language. In 2016 IEEE 23rd International Conference

29 Bibliography

on Software Analysis, Evolution, and Reengineering (SANER), volume 1, pages 634-638,
March 2016. doi: 10.1109/SANER.2016.66.

Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An Analysis of the Dynamic
Behavior of JavaScript Programs. In Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 10, pages 1-12, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0019-3. doi: 10.1145/1806596.1806598.

Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The Eval That Men Do: A
Large-scale Study of the Use of Eval in Javascript Applications. In Proceedings of the 25th
European Conference on Object-Oriented Programming, ECOOP’11, pages 52-78, Berlin,
Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-22654-0.

Matthias Rieger and Stephane Ducasse. Visual Detection of Duplicated Code. page 6.
John Rose, Brian Goetz, and Guy Steele. State of the Values. 2014.

John R. Rose. Arrays 2.0. 2012.

John R. Rose. The isthmus in the VM. 2014.

Harry J. Saal and Zvi Weiss. Some Properties of APL Programs. In Proceedings of Seventh
International Conference on APL, APL 75, pages 292-297, New York, NY, USA, 1975. ACM.
doi: 10.1145/800117.803819.

Harry J. Saal and Zvi Weiss. An empirical study of APL programs. Computer Languages, 2
(3):47-59, January 1977. ISSN 0096-0551. doi: 10.1016/0096-0551(77)90007-8.

A Salvadori, J. Gordon, and C. Capstick. Static Profile of COBOL Programs. SIGPLAN Not.,
10(8):20-33, August 1975. ISSN 0362-1340. doi: 10.1145/956028.956031.

Paul Sandoz. Safety Not Guaranteed: Sun.misc.Unsafe and the quest for safe alternatives.
2014. Oracle Inc. [Online; accessed 29-January-2015].

Paul Sandoz. Personal communication. 2015.

Z. Shen, Z. Li, and P C. Yew. An empirical study of Fortran programs for parallelizing compil-
ers. IEEE Transactions on Parallel and Distributed Systems, 1(3):356-364, July 1990. ISSN
1045-9219. doi: 10.1109/71.80162.

E. Soloway and K. Ehrlich. Empirical Studies of Programming Knowledge. IEEE Transactions
on Software Engineering, SE-10(5):595-609, September 1984. ISSN 0098-5589. doi:
10.1109/TSE.1984.5010283.

Andreas Stuchlik and Stefan Hanenberg. Static vs. Dynamic Type Systems: An Empirical
Study About the Relationship Between Type Casts and Development Time. In Proceedings
of the 7th Symposium on Dynamic Languages, DLS '11, pages 97-106, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0939-4. doi: 10.1145/2047849.2047861.

30 Bibliography

Mengtao Sun and Gang Tan. NativeGuard: Protecting Android Applications from Third-
party Native Libraries. In Proceedings of the 2014 ACM Conference on Security and Privacy
in Wireless & Mobile Networks, WiSec ’14, pages 165-176, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2972-9. doi: 10.1145/2627393.2627396.

Gang Tan and Jason Croft. An Empirical Security Study of the Native Code
in the JDK. /paper/An-Empirical-Security-Study-of-the-Native-Code-in-Tan-
Croft/4c3a84729bd09db6a90a862846bb29e937ec2ced, 2008.

Gang Tan, Srimat Chakradhar, Raghunathan Srivaths, and Ravi Daniel Wang. Safe Java
native interface. In In Proceedings of the 2006 IEEE International Symposium on Secure
Software Engineering, pages 97-106, 2006.

E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and J. Noble. The
Qualitas Corpus: A Curated Collection of Java Code for Empirical Studies. In 2010 Asia
Pacific Software Engineering Conference, pages 336-345, November 2010. doi: 10.1109/
APSEC.2010.46.

N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou. JDeodorant: Identification and Removal
of Type-Checking Bad Smells. In 2008 12th European Conference on Software Maintenance
and Reengineering, pages 329-331, April 2008. doi: 10.1109/CSMR.2008.4493342.

Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano Di Penta, An-
drea De Lucia, and Denys Poshyvanyk. When and Why Your Code Starts to Smell Bad. In
Proceedings of the 37th International Conference on Software Engineering - Volume 1, ICSE
"15, pages 403-414, Piscataway, NJ, USA, 2015. IEEE Press. ISBN 978-1-4799-1934-5.

Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano Di Penta, An-
drea De Lucia, and Denys Poshyvanyk. When and Why Your Code Starts to Smell Bad (and
Whether the Smells Go Away). IEEE Transactions on Software Engineering, 43(11):1063-
1088, November 2017. ISSN 0098-5589, 1939-3520. doi: 10.1109/TSE.2017.2653105.

Phillip Merlin Uesbeck, Andreas Stefik, Stefan Hanenberg, Jan Pedersen, and Patrick Dalei-
den. An Empirical Study on the Impact of C++ Lambdas and Programmer Experi-
ence. In Proceedings of the 38th International Conference on Software Engineering, ICSE
"16, pages 760-771, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3900-1. doi:
10.1145/2884781.2884849.

Raoul-Gabriel Urma and Alan Mycroft. Programming language evolution via source code
query languages. In Proceedings of the ACM 4th Annual Workshop on Evaluation and Us-
ability of Programming Languages and Tools - PLATEAU ’12, page 35, Tucson, Arizona, USA,
2012. ACM Press. ISBN 978-1-4503-1631-6. doi: 10.1145/2414721.2414728.

Jurgen Vinju and James R. Cordy. How to make a bridge between transformation and analy-
sis technologies? In James R. Cordy, Ralf Limmel, and Andreas Winter, editors, Transfor-

31 Bibliography

mation Techniques in Software Engineering, Dagstuhl Seminar Proceedings, Dagstuhl, Ger-
many, 2006. Internationales Begegnungs- und Forschungszentrum fiir Informatik (IBFI),
Schloss Dagstuhl, Germany.

Kris De Volder. Jquery: A generic code browser with a declarative configuration language.
In In Practical Aspects of Declarative Languages, 8th International Symposium, PADL 2006,
pages 88-102. Springer, 2006.

Shiyi Wei, Franceska Xhakaj, and Barbara G. Ryder. Empirical study of the dynamic behavior
of JavaScript objects. Software: Practice and Experience, 46(7):867-889, July 2016. ISSN
1097-024X. doi: 10.1002/spe.2334.

Johnni Winther. Guarded Type Promotion: Eliminating Redundant Casts in Java. In
Proceedings of the 13th Workshop on Formal Techniques for Java-Like Programs, FTfJP
11, pages 6:1-6:8, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0893-9. doi:
10.1145/2076674.2076680.

Baijun Wu and Sheng Chen. How Type Errors Were Fixed and What Students Did? Proc.
ACM Program. Lang., 1(OOPSLA):105:1-105:27, October 2017. ISSN 2475-1421. doi:
10.1145/3133929.

Baijun Wu, John Peter Campora III, and Sheng Chen. Learning User Friendly Type-error
Messages. Proc. ACM Program. Lang., 1(OOPSLA):106:1-106:29, October 2017. ISSN
2475-1421. doi: 10.1145/3133930.

Yang Yuan and Yao Guo. CMCD: Count matrix based code clone detection. In Proceedings -
Asia-Pacific Software Engineering Conference, APSEC, pages 250-257, December 2011. doi:
10.1109/APSEC.2011.13.

Alex Zhitnitsky. The Top 10 Exception Types in Production Java Applications - Based
on 1B Events. https://blog.takipi.com/the-top-10-exceptions-types-in-production-java-
applications-based-on-1b-events/, June 2016.

	Contents
	Introduction
	Research Question
	Plan

	Literature Review
	Benchmarks and Corpora
	Tools for Mining Software Repositories
	Large-scale Codebase Empirical Studies
	Unsafe Intrinsics in Java
	Casting

	The Java Unsafe API in the Wild
	Is Unsafe Used?
	What is the Unsafe API Used for?

	Casting Operations in the Wild
	Overview of our Study
	Is the Cast Operator used?
	Finding Casts Usage Patterns

	Conclusions
	Bibliography

